
Discordant MIC Analysis: Testing for Superiority within a Noninferiority Trial

Dean Follmann, Erica Brittain, and John Powers National Institute of Allergy and Infectious Diseases November 19, 2014

Current Anti-infective Drug Landscape

- Efficacy typically demonstrated with non-inferiority trial: comparing new Drug B to control Drug A
- Cl of difference in success rates needs to exceed some *margin* M

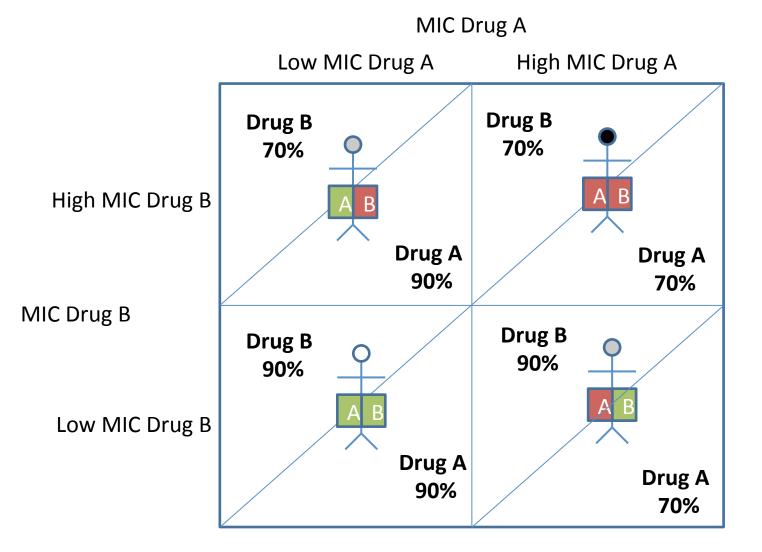
Dual Goal

- Goal 1: Demonstrate Drug B is active (better than placebo)
 - Established indirectly: must know magnitude of A's benefit over placebo, M₁. B must then be within M₁ of A
- Goal 2: Demonstrate that Drug B is similar to Drug A
 - By showing difference is less than M₂, which is *clinical-judgment* based acceptable loss in efficacy
- To satisfy both goals: M=min(M₁,M₂)
- With current approach: if no historic data sufficient to set M₁, no way forward

A Pharmacometric-based Approach to Estimate M₁

- Ambrose et al (2012)
- Using a one arm sample of patients treated with Drug A: model and estimate success rates as function of AUC:MIC
 - Estimate success at very high AUC:MIC value
 - Estimate success at very low AUC:MIC (proxy placebo)
 - Difference is considered the treatment effect of A vs placebo
- Lower bound of a 95% CI of this synthetic treatment effect can serve as an estimate of M₁

More on One Sample Approach


- But, not a randomized comparison
 - High AUC:MIC patients may be healthier.
 - Low AUC:MIC may identify pathogens that are harder for natural immunity to defeat
 - Crux: we do NOT know how these same patients would do with placebo

Drug	Success Rate with Very High AUC:MIC	Success Rate with Very Low AUC:MIC
Α	90%	60%
Placebo	?	?

Can We Improve This Strategy with Randomization?

 Hidden within an ordinary non-inferiority antiinfective trial are precious sub-trials well placed to show superiority

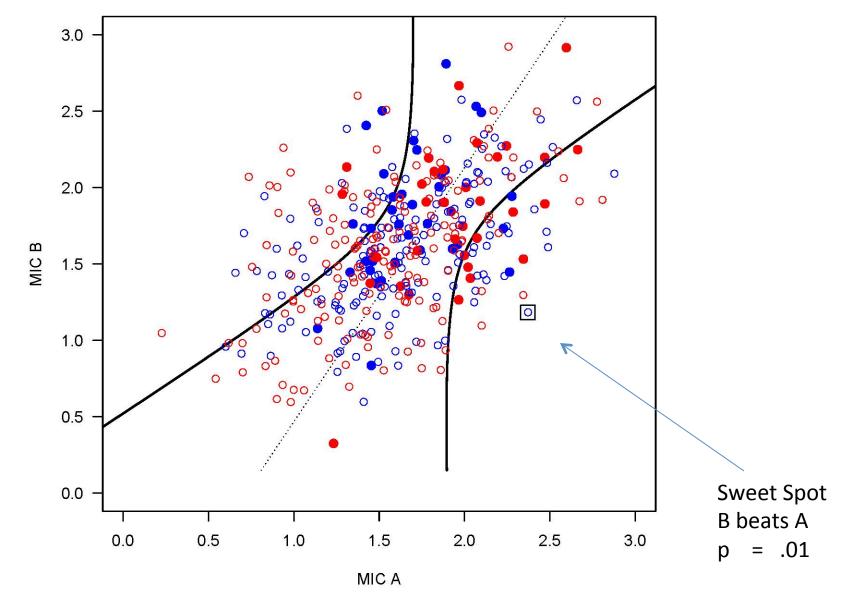
Consider Four Interesting Subgroups: Where Overall Success Rates are 80% in Both Arms

Key Idea: Test for Superiority of B to A Where Most Likely to Find it

- Potentially get evidence of B's activity DIRECTLY within the trial!
 - Test superiority of Drug B to Drug A in the discordant MIC subgroup of patients – who are highly susceptible to B and not so susceptible to A
 - Then, conclude B is active one of our dual goals
 - Don't need that hard-to-get historic evidence about the magnitude of A's benefit over placebo, M₁!
 - Required assumption: A is not worse than placebo in subgroup
 - remember A is approved
- (Focus now on MIC as our marker of success prediction
 - AUC:MIC is trickier more on this later)

Proposed Demonstration of Efficacy when M₁ Unknown

- Recall dual goal:
 - B has activity and B is similar in overall efficacy to A
- Decide on a clinically acceptable margin M₂ e.g. 10%.
- Efficacy supported if
 - Overall NI margin of **10% (M₂)** is met AND
 - Good outcome on pre-specified test of superiority of B over A shown in patients for whom it is a priori most likely
 - High MIC-A/low MIC-B subgroup
 - The patient in the ``sweet spot" (using Discordant MIC model)
 - Patients with high MIC-A (e.g., Advisory Committee 2012: Televancin vs Vancomycin results in s. aureus and MIC-V>1; p<.05)


Discordant Regression Method

- Only analyzing patients in the Low MIC-B/High MIC-A subgroup is likely to be statistically inefficient
- So, use all data with logistic regression to estimate response surface
- Log odds of success on B to success on A:

 $\beta_0 + \beta_1 Z + \beta_2 MIC-A + \beta_3 MIC-B + \beta_4 Z MIC-A + \beta_5 Z MIC-B$

– Z= 1 drug B (0 Drug A)

- Test $H_0: \beta_1 + \beta_4 a_0 + \beta_5 b_0 = 0$
 - Procedure is point-wise, so need to pre-specify a single "sweet spot" (MIC-A=a₀, MIC-B=b₀) to have correct Type I error rate
- Simulations done with 200/arm, range of correlations between MIC-A and MIC-B, range of relationships between MIC & outcome

O Patient Got Drug B and had Success

Patient got Drug A and Failed

Simulation Study Results Suggest Method Will Have Reasonable Power When:

- Clear relationship in the trial:
 - Between MIC-A and success on Drug A, and
 - Between MIC-B and success on Drug B
- Little relationship between response and MIC to other drug
- MIC-A and MIC-B are not highly correlated
- Selected sweet spot is a powerful spot to test

Advantages

- Encourages sponsors to design for superiority
 - So that rigor is rewarded instead of punished
 - Try to avoid patients who cure spontaneously or who do not have bacterial disease
- Get *direct* evidence that B has activity, instead of relying on external data
 - External data might not be relevant
- But, challenges remain...

Challenge 1: How to use AUC:MIC ratio?

- AUC: MIC has (much?) stronger relationship to success than MIC
 - Much greater variability within a trial
 - (Side Question: are patients with high MIC to his/her randomized drug tossed out? If yes, is it compatible with ITT?)
- Problems with using AUC:MIC
 - AUC is a post-baseline covariate
 - AUC to A inherently missing in those randomized to Drug
 B, and vice versa
 - Currently only measured in subset of B and none in A

Challenge 1: Using AUC:MIC

- Solutions?
- Augmentation:
 - Crossover patients twice to get their AUC to each drug at end of regular follow-up
 - but this requires (strong & untestable) assumptions
- Baseline models (More promising?):
 - Could use baseline characteristics to predict AUC
 - Prediction models exist, but how relevant?
 - If AUC were measured in both arms, could develop withintrial predictions of AUC using baseline data (age, gender, weight,...)

Challenge 2: Selection of Sweet Spot

- The discordant MIC regression analysis is point-wise, and thus to protect Type I error rate, we need to pick a single point *a priori*
- Could use a simultaneous approach to testing, but this is nontargeted and thus much more conservative
- Simple approach: pick observed value that is closest in Euclidean distance to (Max observed MIC-A, 0) point
 - But depending on the true model, this may not be optimal point
- Alternative: adaptive selection of sweet spot, using (half) blinded mixture models looks very promising

Challenge 3: Feasibility

- Enhance power by pooling multiple studies
 - Should not increase usual sample size requirement
- Feasibility probably highly dependent on the context of each given study setting. Evaluate power in Phase 2:
 - Relationship between MIC and outcome within arm
 - Also explore viability of using AUC:MIC

Summary

- New paradigm for demonstrating efficacy if inadequate historic data to know treatment effect of control drug A
 - Pick a clinically acceptable margin for total sample PLUS
 - Test for superiority where it's most likely to be present
- Encourages a careful design/conduct to show superiority
- Current work:
 - Extension to AUC:MIC
 - Better procedures / sweet spot
 - Consideration of real world feasibility

 Follmann D, Brittain E, Powers JH: Discordant minimum inhibitory concentration analysis: a new path of licensure for anti-infective drugs. *Clinical Trials* 2013; 10: 876-885