

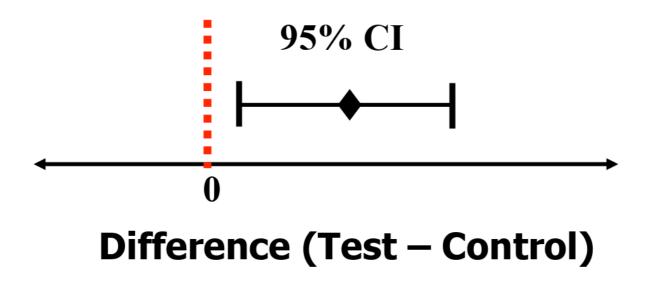
Summary of unmet need guidance and statistical challenges

Daniel B. Rubin, PhD

Statistical Reviewer Division of Biometrics IV Office of Biostatistics, CDER, FDA

Disclaimer

 This presentation reflects the views of the presenter and should not be construed to represent FDA's views or policies.


Outline

- Superiority design
- Non-inferiority design
- External controls
- Lessons from combination trials

Superiority design

• Evaluate whether a new treatment leads to better clinical outcomes than a control regimen

Superiority design

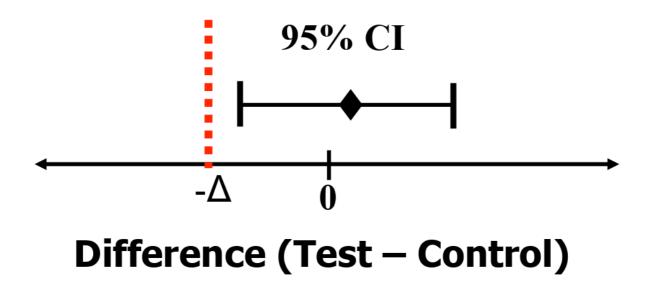
- Utility:
 - Answers the most relevant question
 - Provides the most statistically reliable answer
- Possible inducements:
 - Pooling of infections at different body sites
 - Less stringent statistical significance level

Superiority design

- Challenges:
 - Must hypothesize large effect size over best current therapy
 - Resistance must be prevalent

Control failure rate	Treatment failure rate	Sample size per arm
50%	30%	N = 91
50%	35%	N = 167
50%	40%	N = 385
50%	45%	N = 1562

Assumes one-sided α = 0.025 significance level, 80% power



Outline

- Superiority design
- Non-inferiority design
- External controls
- Lessons from combination trials

• Must determine whether the test drug is unacceptably worse than the active control, according to margin Δ

- Utility:
 - Traditional method for developing an antibiotic is to conduct a non-inferiority trial in patients with infections at a specific body site
- Challenges in design and analysis:
 - Historical evidence of sensitivity to drug effects
 - Constancy assumption
 - Assay sensitivity
 - Preservation of active control effect

- Guidance discussion:
 - Conduct trial in patients with acceptable current options
 - Wider than normal non-inferiority margin
 - Extrapolate efficacy to group with unmet need
- Challenge of extrapolation:
 - Patient factors differ between those with susceptible pathogens and those with resistant pathogens
 - Patient factors are prognostic of outcomes and can modify treatment effects

www.fda.gov

Table 1. Demographics and Outcomes of Sensitive vs Resistant ICU-Acquired Infections

Demographics and outcomes	Sensitive	Resistant	p Value
n	1,669	739	_
Age, y, mean ± SEM	52.8 ± 0.4	53.7 ± 0.5	0.16
Male sex, %	61.5	61.5	1.00
Body mass index, kg/m ² , mean ± SEM	30.4 ± 0.2	31.4 ± 0.3	0.007
APACHE II score, mean ± SEM	19.2 ± 0.1	20.2 ± 0.2	< 0.001
WBC, maximum, mean ± SEM	15.7 ± 0.2	15.0 ± 0.3	0.06
Trauma, %	49.4	35.9	< 0.001
Transplant recipient, %	12.3	21.9	< 0.001
Transfused, %	82.8	93.2	< 0.001
Hemodialysis, %	17.1	28.1	< 0.001
Ventilator dependence, %	68.8	73.2	0.01

Source: Rosenberger et al. (2012)

Outline

- Superiority designs
- Non-inferiority designs
- External controls
- Lessons from combination trials

External controls

- Conduct a randomized controlled trial, but augment the control group with external data on subjects treated with the control regimen
- Utility:
 - Increased statistical power when patients are scarce
 - Avoids single arm case series with descriptive statistics

External controls

- Challenges encountered putting idea into practice:
 - Selection of the control group (Chart review? Literature?)
 - Ensuring patient comparability with matching or adjustment
 - Minimizing bias in the analysis with pre-specification
- Challenges specific to antibacterial setting:
 - Patients do not uniformly die or fail to recover
 - Heterogeneous outcomes across studies
 - Underlying co-morbidities predictive of outcomes

External controls

• Selected summary of literature reports of pandrug-resistant (i.e., resistant to all antibiotics) Gram-negative infections

First author	Year published	Sample size	Recovery/survival rate
Falagas	2005	n = 7	5/7 (71.4%)
Beno	2006	n = 10	3/10 (30.0%)
Mentzelopoulos	2007	n = 5	4/5 (80.0%)
Falagas	2008	n = 24	14/24 (58.3%)
Elemam	2009	n = 2	1/2 (50.0%)
Tsioutis	2010	n = 21	16/21 (76.2%)
Giamarellou	2013	n = 3	3/3 (100%)
Oliva	2014	n = 3	2/3 (66.7%)
Total		n = 75	48/75 (64.0%)

Outline

- Superiority designs
- Non-inferiority designs
- External controls
- Lessons from combination trials

Lessons from combination trials

• Three recent randomized, pathogen-specific trials comparing colistin monotherapy to combinations for cabapenem-resistant *A. baumannii* infections

Author	Country	Period	Sample size	Combination
Durante- Mangoni	Italy (5 centers)	11/2008-7/2011	N = 210	Colistin + Rifampicin
Aydmir	Turkey (1 center)	03/2011-03/2012	N = 43	Colistin + Rifampicin
Sirijatuphat	Thailand (1 center)	01/2010-03/2011	N = 94	Colistin + IV Fosfomycin

Lessons from combination trials (pooling body sites)

Infection	Durante- Mangoni	Aydmir	Sirijatuphat
Pneumonia	77.5%	100%	76.6%
Bacteremia	20.1%	0%	5.4%
Intra-abdominal	2.4%	0%	6.4%
Urinary tract	0%	0%	5.4%
Other	0%	0%	6.4%

Lessons from combination trials (mortality results)

Trial	Mortality in randomized groups		
Durante-	Colistin	Colistin + Rifampicin	
Mangoni	45/105 (42.9%)	45/104 (43.2%)	
Aydemir	Colistin	Colistin + Rifampicin	
	16/22 (72.7%)	13/21 (61.9%)	
Sirijatuphat	Colistin	Colistin + Fosfomycin	
	27/47 (57.4%)	22/47 (46.8%)	
Pooled trials	Colistin	Colistin + Add-on	Difference (95% CI)
	88/174 (50.6%)	80/172 (46.5%)	4.1% (-6.4% to 14.5%)

Lessons from combination trials

- Bias:
 - It could be misleading to make non-randomized cross-study comparisons, as mortality rates significantly varied over trials
- Variance:
 - No evidence of mortality benefit for combinations over monotherapy, but benefit cannot be excluded. Absent dramatic treatment effects, large numbers of subjects can be needed for definitive answers.
- Enrollment:
 - It has been possible to enroll a moderate number of subjects in settings of resistance, unmet need, and pathogen-specific trials

References

- Durante-Mangoni E. et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drugresistant *Acinetobacter baumannii*: a multicenter, randomized clinical trial. *Clinical Infectious Diseases*. Published online May 20, 2013.
- Aydemir H. et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant *Acinetobacter baumannii* ventilator-associated pneumonia. *Epidemiol. Infect*. 2013;141:1214-1222.
- Sirijatuphat R. and Thamlikitkul V. colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant *Acinetobacter baumannii* infections: a preliminary study. *Antimicrob. Agents Chemoth*. Published online ahead of print on June 30, 2014.
- ICH Harmonised Tripartite Guideline. Choice of control group and related issues in clinical trials E10. July, 2000.

References

- Falagas et al. Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. *BMC Infectious Diseases*, 2005;5:24.
- Beno et al. Bacteraemia in cancer patients caused by colistin-resistant Gram-negative bacilli after previous exposure to ciprofloxacin and/or colistin. *Clin Microbiol Infect*, 2006;12:497-498.
- Mentzelopoulos et al. Prolonged use of carbapenems and colistin predisposes to ventilator-associated pneumonia by pandrug-resistant *Pseudomonas aeruginosa*. *Intensive Care Med*, 2007;33:1524-1532.
- Rosenberger LH et al. Infections caused by multidrug resistant organisms are not associated with overall, all-cause mortality in the surgical intensive care unit: the 20,000 foot view. *Journal of the American College of Surgeons*, 2012;214(5):747-55.

References

- Falagas et al. Pandrug-resistant *Klebsiella pneumoniae, Pseudomonas* aeruginosa and Acinetobacter baumannii infections: characteristics and outcome in a series of 28 patients. Int J Antimicrob Agents, 2008;32(5):450-454.
- Elemam et al. Infection with a panresistant *Klebsiella pneumoniae*: a report of 2 cases and a brief review of the literature. *Clin Infect Dis*, 2009;49(2):271-274.
- Tsioutis et al. Infections by pandrug-resistant gram-negative bacteria: clinical profile, therapeutic management, and outcome in a series of 21 patients. *Eur J Clin Microbiol Infect Dis*, 2010;29:301-305.
- Giamarellou et al. Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrugresistant klebsiella pneumoniae. *Antimicrob. Agents Chemother.*, 2013.
- Oliva et al. Synergistic activity and effectiveness of a doublecarbapenem regimen in pandrug-resistant *Klebsiella pneumoniae* bloodstream infections. *J Antimicrob Chemoth*, 2014.