Application of PK/PD in New Anti-Infective Drug Development: Current Challenges and Future Perspectives

Seong Jang, Ph.D.

Reviewer, Office of Clinical Pharmacology, OTS/CDER/FDA

Disclaimer

The views presented here do not necessarily reflect those of the US Food and Drug Administration.

Outline

- Summarize PK/PD principles for antiinfective drugs: Current application
- Describe potential application of PK/PD in new anti-infective drug development
- Discuss current challenges and future perspectives

Why is PK/PD information important?

PK/PD index: Determinant of drug response

Identifying the PK/PD index that best correlates with efficacy

- In vitro hollow-fiber system
- Animal model of infection

Determination of PK/PD Target

PK/PD target: The magnitude of PK/PD index required for desired efficacy in animal models of infection

PK/PD target determined from animal models is used as the target for humans.

Current Utility of PK/PD target

Dose selection for clinical studies:

Current Utility of PK/PD target: Probability of Target Attainment (PTA)

PK/PD target & Human (Patients) PK

Target AUC_{24}/MIC Ratio = 5 Dose: 100 mg QD

AUC (n=1000)	AUC/MIC (n=1000)			
	MIC=1	MIC=2	MIC=4	MIC=8
10 (P1)	10	5	2.5	1.25
20 (P10)	20	10	5	2.5
30 (P25)	30	15	7.5	3.75
40 (P40)	40	20	10	5
200 (P100)	200	100	50	25
% PTA	~100%	99%	90%	60%

Probability of Target Attainment

- To determine susceptibility criteria
- To evaluate the clinical dose proposed

Potential Application of PTA as an Evidence of Drug Efficacy

When a clinical efficacy trial is not feasible or is limited for infections or pathogens of low occurrence,

Quality of data for PK/PD target and human PK simulation are critical.

PTA as an Evidence of Drug Efficacy: Limitations and Challenges

PK/PD target determined in animal model

 PD endpoints vs. Clinical Response: stasis, 1-log kill, 2-log kill, or survival in animals

- Role of immune system: Immunocompromised animals
- Concentrations in infection sites
 Animals ≤ Human

PTA as an Evidence of Drug Efficacy: Limitations and Challenges

Human PK simulations

- Monte Carlo Simulation: Observed PK variability
- Different variability b/w healthy subjects vs. patients with infection

Covariates of Pop. PK:
 Comorbidities, Infection itself, and etc

PTA as an Evidence of Drug Efficacy: Future Perspective

- Intensive animal studies with better animal models
- PK/PD target using clinical exposure-response data
- PK, MIC, and clinical outcomes from Phase 2 dose-ranging studies
- PK, MIC, and clinical outcomes from Phase 3 studies:
 To apply to other infection sites

Acknowledgement

Kimberly Bergman, Pharm.D.

Ryan Owen, Ph.D.

Kellie S. Reynolds, Pharm.D.

John A. Lazor, Pharm.D.