Some Proposals in the Analysis of Antibacterial Drug Trials

Margaret Gamalo-Siebers[§] and Ram C. Tiwari[‡]

§Office of Analytics and Outreach/CFSAN/FDA

[‡] Office of Biostatistics/CDER/FDA

Disclaimer

This presentation reflects the views of the authors and should not be construed to represent FDA's views or policies.

Outline

- o Network Meta-analysis
 - Case 1: Placebo Present
 - Case 2: Placebo Not Present
- o Bayesian subgroup analysis
 - Flexible Shrinkage estimators
 - Flexible Regression Type Adjustments
 - Application
- o Data augmentation
 - Propensity Score Matching schemes
 - Investigations

Case 1: Placebo Present

Non-inferiority trial and historical trials with data x, and parameter of interest θ .

Trial	Test	Active-Control	Placebo
Historical Trial 1	θ_{1T}	θ_{1C}	θ_{1P}
	NA	$x_{1,C}$	$x_{1,P}$
Historical Trial 2	θ_{2T}	$ heta_{2C}$	θ_{2P}
	NA	$x_{2,C}$	$x_{2,P}$
:	:	ŧ	:
Historical Trial N	$ heta_{NT}$	$ heta_{NC}$	θ_{NP}
	NA	$x_{N,C}$	$x_{N,P}$
Non-inferiority Trial	$\theta_{(N+1)T}$	$\theta_{(N+1)C}$	$\theta_{(N+1)P}$
	$x_{N+1,T}$	$x_{N+1,C}$	NA
NA = Not available			5

Case 1: Placebo Present

• In non-inferiority, the ultimate goal is to quantify $\theta_T - \theta_P$ which can be decomposed as

$$\theta_T - \theta_P = (\theta_T - \theta_C) + (\theta_C - \theta_P) \tag{1}$$

- Determined via Δ_{CT} and Δ_{CP}
- Model: Say $\eta_{it} = g(\theta_{it}), t \in \{T, C, P\}$ and $i = 1, \dots, I$

$$\eta_{it} = \mu_{iC} + \Delta_{iCt},\tag{2}$$

where $\Delta_{iCt} = \eta_{it} - \mu_{iC}$ effect of treatment t relative to treatment C in study i.

Case 1: Placebo Present

- Simon (1999): Δ_{Ct} is fixed between drug t and C
- Schmidli et al. (2013) based on Lu and Ades (2004), allow for variability between studies, i.e., $\Delta_{iCt} \sim N(\Delta_{Ct}, \sigma^2)$
- $P(\Delta_{CT} > \lambda \Delta_{CP})$ can also be obtained!

Case 1: Placebo Present

Predictive Network Meta-analysis

- Sampling Model: $x_{i,t} \sim \text{Bin}(p_{i,t}, n_{i,t}), \quad t \in \{T, C, P\}, i = 1, \dots, N+1,$ N historical studies plus 1 non-inferiority study
- Model parameters: $logit(p_{i,t}) = \theta_{i,C} + \Delta_{i,t}, \ \Delta_{i,t} = 0 \text{ if } t = C$
- Priors: $\theta_{i,C} \sim N(\mu_{\theta}, \tau_{\theta}^2)$, $\Delta_{i,t} \sim N(\boldsymbol{\mu}_{\Delta}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}_{\Delta} = (\delta_{PC}, \delta_{TC})'$, $\boldsymbol{\Sigma} = ((\tau^2, \rho \tau)', (\rho \tau, \tau^2)')$
- Hyperpriors: $\mu_{\theta} \sim N(0, 100), \ \tau_{\theta}^2 \sim N(0, 100)I(0, \infty), \ \delta_{PC} \coprod \delta_{TC} \sim N(0, 100), \ \tau \sim N(0, 100)I(0, \infty)$
- Parameters of Interest: $p_{N+1,C} = 1/(1 + \exp(-\theta_{N+1,C}), p_{N+1,t} = 1/(1 + \eta_{N+1,t}),$ where $\eta_{N+1,t} = \exp\{-(\theta_{N+1,C} + \delta_{N+1,tC})\}, t \in \{T, P\}$
- Parameters of Interest: $p_C = 1/(1 + \exp(-\theta_C), p_t = 1/(1 + \eta_t),$ where $\eta_t = \exp\{-(\mu_\theta + \delta_{tC})\}, t \in \{T, P\}$

Case 1: Placebo Present

Data (events/patient) from the ESSENCE non-inferiority trial and 6 historical trials, for active control (C: aspirin + heparin), test (T: aspirin + enoxaparin), and putative placebo (P: aspirin)

Test	Active-control Placebo		OR (95% CI) vs. Active control
	3/210 (1.4%)	7/189 (3.7%)	2.44 (0.67, 8.80)
	0/37 (0%)	1/32 (3.1%)	3.57 (0.14, 90.8)
	4/105 (3.8%)	9/109 (8.3%)	2.13 (0.67, 6.77)
	42/154 (27.3%)	40/131 (30.5%)	1.17 (0.70, 1.95)
	4/70 (5.7%)	7/73 (9.6%)	1.67 (0.49, 5.63)
Total	55/698 (7.9%)	68/655 (10.4%)	

Case 1: Placebo Present

- Fixed margin methods cannot be applied! OR (95% CI) of active control vs. placebo is 0.673(0.449, 1.011).
- Synthesis approach may work but λ close to 1 (no preservation)! Solution: show T is superior to P.
- Bayesian putative placebo approach (Simon, 1999). $Pr\{g(\theta_T) g(\theta_P) < 0\} = 0.994$, where $g(\theta) = \text{logit}(\theta)$

Case 1: Placebo Present

	Posterior distribution: median (95% Credible Interval					
Parameter	Historical	Historical and non- inferiority				
Between-trial standard de	viations for log-OR (vs. C),	and log-odds (C)				
$ au_{ heta}$	0.93 (0.60, 1.45)	0.90 (0.58, 1.40)				
$ au_{\delta}$	0.18 (0.04, 0.53)	0.16 (0.02, 0.54)				
OR and probability of superiority in ESSENCE NI trial						
$\exp(\delta_{TP})$		0.50 (0.29, 0.91)				
P(T better than P)		0.987				
$\exp(\delta_{TC})$		0.79 (0.59, 1.02)				
P(T better than C)		0.965				
$\exp(\delta_{CP})$	0.64 (0.38, 1.02)	0.65 (0.35, 1.08)				
P(C better than P)	0.97	0.947				

Case 2: Placebo Not Present

Non-inferiority trial and historical trials with data x, and parameter of interest θ .

Trial	Test	Control	Other Controls
Historical Trial 1	θ_{1T}	$ heta_{1C}$	$ heta_{1C_1}$
	NA	$x_{1,C}$	x_{1,C_1}
Historical Trial 2	θ_{2T}	θ_{2C}	$ heta_{2C_2}$
	NA	$x_{2,C}$	x_{2,C_2}
:	:	i	i.
Historical Trial N	$ heta_{NT}$	θ_{NC}	$ heta_{NC_K}$
	NA	$x_{N,C}$	x_{N,C_k}
Non-inferiority Trial	$\theta_{(N+1)T}$	$\theta_{(N+1)C}$	$\theta_{(N+1)C_1},\ldots,\theta_{(N+1)C_K}$
	$x_{N+1,T}$	$x_{N+1,C}$	NA
NA = Not available			

Case 2: Placebo Not Present

- Direct comparison between placebo and active-control are not available in the historical data, but the direct comparisons of other treatments with at least one common comparator are available
- Since data for $(\eta_{jC} \eta_C)$, $j \in \{1, \ldots, K\}$, exists, model $(\eta_T \eta_C)$ as

$$\eta_{it} = \eta_{iC} + \Delta_{itC}, \quad i = 1, \dots, S+1 \tag{7}$$

where $t \in \{C_1, ..., C_K, T\}$

 Allows borrowing of information from existing data and at the same time estimates

$$\eta_T - \eta_{jC} = (\eta_T - \eta_C) - (\eta_{jC} - \eta_C) \text{ for } j \in \{1, \dots, K\}!$$
 (8)

Case 2: Placebo Not Present

Predictive Network Meta-analysis with power prior for historical data

- Sampling Model: $x_{i,t} \sim \text{Bin}(p_{i,t}, n_{i,t}), \quad t \in \{T, C\}, \ i = N + 1,$ $x_{i,t}a_0 \sim \text{Bin}(p_{i,t}, n_{i,t}a_0), \quad t \in \{C, P\}, \ i = 1, \dots, N,$
- Model parameters: $logit(p_{i,t}) = \theta_{i,C} + \Delta_{i,t}, \ \Delta_{i,t} = 0 \text{ if } t = C$
- Priors: $\theta_{i,C} \sim N(\mu_{\theta}, \tau_{\theta}^2)$, $\Delta_{i,t} \sim DP(\nu, G)$, $G \sim N(\mu_{\Delta}, \Sigma)$,
- Hyperpriors: $\mu_{\theta} \sim N(0, 100)$, $\tau_{\theta} \sim N(0, 100)I(0, \infty)$ $\mu_{\Delta} \sim N(0, \Sigma_{\Delta})$, $\Sigma = [(\tau^2, \rho \tau)', (\rho \tau, \tau^2)'], \tau \sim N(0, \sigma_{\tau}^2)I(0, \infty)$

Case 2: Placebo Not Present

Antibiotic comparison	MITT population, clinical failure at test of cure					
	#. of trials	Proportion of failure				
		Comparator	Vancomycin			
LIN vs. VAN	2	144/583 (24.7%)	171/573 (29.8%)			
		35/99 (35.4%)	33/87 (37.9%)			
DAP vs. VAN	3	12/48 (25.0%)	6/48 (12.5%)			
		99/264 (37.5%)	104/266 (39.1%)			
		53/270 (19.6%)	57/292 (19.5%)			
TIG vs. VAN	2	41/253 (16.2%)	34/250 (13.6%)			
		65/268 (24.3%)	59/255 (23.1%)			
TEL vs. VAN	3	117/426 (27.5%)	122/429 (28.4%)			
		124/472 (26.3%)	129/489 (26.4%)			
		18/100 (18.0%)	14/95 (14.7%)			
CEF vs. VAN	3	47/351 (13.4%)	50/347 (14.4%)			
		51/342 (14.9%)	49/338 (14.5%)			
		8/67 (11.9%)	6/32 (18.8%)			

Case 2: Placebo Not Present

Existing cSSSTI Trial Network

Case 2: Placebo Not Present

- All the upper bounds of the credible intervals about the difference in clinical failure rate are less than 0.10.
- Even for NI-3, whose sample size is much smaller than NI-1 and NI-2, non-inferiority is demonstrated by borrowing the strengths from historical data.
- Usual confidence interval with continuity correction for the two-sample proportion difference is (-0.25, 0.11)!

	Parameters of int	erest for the NI trial	l			
	NI-1		NI-2		NI-3	
	θ	$\theta_t - \theta_{\mathrm{VAN}}$	θ	$\theta_t - \theta_{\text{VAN}}$	θ	$\theta_t - \theta_{\mathrm{VAN}}$
VAN	0.15 (0.12, 0.19)	_	0.15 (0.12, 0.19)	-	0.21 (0.11, 0.32)	-
LIN	$0.13 \ (0.09, \ 0.19)$	-0.02 (-0.06, 0.03)	0.13 (0.09, 0.19)	-0.02 (-0.06, 0.03)	$0.18 \ (0.09, \ 0.30)$	-0.02 (-0.08, 0.03)
DAP	0.16 (0.10, 0.22)	0.01 (-0.03, 0.06)	0.16 (0.10, 0.22)	0.01 (-0.04, 0.06)	0.22(0.11, 0.35)	0.00 (-0.05, 0.08)
TIG	0.16 (0.11, 0.23)	0.01 (-0.03, 0.06)	0.16 (0.10, 0.23)	0.01 (-0.04, 0.07)	$0.23 \ (0.11, \ 0.38)$	0.02 (-0.05, 0.11)
$_{ m TEL}$	0.15 (0.10, 0.21)	0.00 (-0.03, 0.04)	0.15 (0.10, 0.21)	0.00 (-0.04, 0.05)	$0.21 \ (0.10, 0.33)$	0.00 (-0.05, 0.05)
CEF	0.14 (0.10, 0.17)	-0.02 (-0.07, 0.04)	0.15 (0.11, 0.19)	-0.00 (-0.06, 0.05)	0.12 (0.06, 0.21)	-0.09 (-0.22, 0.06)

Table 9: Posterior estimates from the network meta-analysis for the cSSTI data, using 200,000 MCMC iterations after discarding 5000 burn-in.

Case 2: Placebo Not Present

Case 2: Placebo Not Present

Rankogram

- Streamlined or 'Tier C' approach: small trial including infections from different body sites with common infecting MDR pathogen
- Bayesian hierarchical modeling allows for borrowing of information from one subgroup to another
- Effect Modification: waters down the effect of promising subpopulation while attenuates in subpopulation where it is less effective -- not unique to Bayesian models
- Assumes it is acceptable to exchange treatment responses in different treatment groups/infections (Exchangeability)

• Let y_{ji_j} be the treatment response for subject i_j , $i_j = 1, ..., n_j$ in subgroup j, j = 1, ..., J. For $y_{ji_j} | \theta_j \sim \text{Ber}(p_j)$,

$$logit(p_{ji_j}) = \theta_j, \quad \theta_j | \eta \sim G(\eta), \quad \eta \sim P$$
 (3)

- What are appropriate models for θ_j ? And, what is the choice of G, if there is such a distribution?
- de Finetti Theorem: there is a distribution G such that

$$\theta_1, \ldots, \theta_J \sim G(\eta),$$
 (4)

i.e., $\theta_1, \ldots, \theta_J$ are iid given $G(\eta), \eta \sim P$.

Bayesian Subgroup Analysis: Flexible Shrinkage Estimators

• Model 1: Simple shrinkage, partially exchangeable

$$\log \operatorname{it}(p_{ji_j}) = \theta_{ji_j}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, J$$

$$\theta_{ji_j} = \alpha_{ji_j} + \psi_j \sim G, \quad \text{where} \quad G:$$

$$\alpha_{ji_j} | H \sim H, \quad H | \rho, H_0 \sim \operatorname{DP}(\rho, H_0), H_0 \sim \operatorname{N}(0, \tau^2), \rho \sim \Gamma(2, 1)$$

$$\psi_j \sim \operatorname{N}(0, \omega_{\psi_j}^2), \omega_{\psi_j} \sim \operatorname{N}(0, 1) I(0, \infty)$$

• DP prior on α_{ji_j} induces a product partition model (Hartigan, 1990) on the distribution of ρ

Bayesian Testing: Example 2

Antibiotic comparison	MITT population, clinical failure at test of cure					
	#. of trials	Proportion of failure				
		Comparator	Vancomycin			
LIN vs. VAN	2	144/583 (24.7%)	171/573 (29.8%)			
		35/99 (35.4%)	33/87 (37.9%)			
DAP vs. VAN	3	12/48 (25.0%)	6/48 (12.5%)			
		99/264 (37.5%)	104/266 (39.1%)			
		53/270 (19.6%)	57/292 (19.5%)			
TIG vs. VAN	2	41/253 (16.2%)	34/250 (13.6%)			
		65/268 (24.3%)	59/255 (23.1%)			
TEL vs. VAN	3	117/426 (27.5%)	122/429 (28.4%)			
		124/472 (26.3%)	129/489 (26.4%)			
		18/100 (18.0%)	14/95 (14.7%)			
CEF vs. VAN	3	47/351 (13.4%)	50/347 (14.4%)			
		51/342 (14.9%)	49/338 (14.5%)			
		8/67 (11.9%)	6/32 (18.8%)			

Bayesian Subgroup Analysis: Flexible Shrinkage Estimators

• True mean for α_{ji_j} is $\mu_{\alpha} = \sum_{k=1}^{L} p_i \mu_{\alpha_k}$ where μ_{α_k} is the mean of cluster k since the finite representation of H (Sethuraman and Tiwari, 1982) is

$$H = \sum_{k=1}^{L} \pi_k \delta_{\alpha_k}; \quad \pi_L = 1 - \pi_1 - \dots - \pi_{L-1}$$
 (5)

- The J subgroups are assumed a priori normally distributed with common mean and variance. Although the DP prior for α_{ji_j} allows clustering a posteriori, it is still a priori exchangeable with respect to experimental units
- Model maybe too parsimonious!

Bayesian Subgroup Analysis: Flexible Shrinkage Estimators

Model 2A: Shrinkage with regression, partially exchangeable

$$\log \operatorname{it}(p_{ji_j}) = \theta_{ji_j}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, J$$

$$\theta_{ji_j} = \alpha_{ji_j} + x_{ji_j}\beta_j + \psi_j \sim G, \quad \text{where} \quad G:$$

$$\alpha_{ji_j}|H \sim H, \quad H|\rho, H_0 \sim \operatorname{DP}(\rho, H_0), H_0 \sim \operatorname{N}(0, \tau^2), \rho \sim \Gamma(2, 1)$$

$$\beta_j \sim \operatorname{N}(0, \omega_{\beta_j}^2), \omega_{\beta_j} \sim \operatorname{N}(0, 1)I(0, \infty)$$

$$\psi_j \sim \operatorname{N}(0, \omega_{\psi_j}^2), \omega_{\psi_j} \sim \operatorname{N}(0, 1)I(0, \infty)$$

Flexible Regression-type Estimators

- Subgroups j = 1..., J formed from partitions of covariates x_{is} and T_{is} , where s = 1, ..., S studies and T_{is} are study-specific treatment indicators.
- Model 3: Regression-type (Dixon-Simon, 1991), partially exchangeable

$$\log \operatorname{it}(p_{is}) = \theta_{is}, \quad i = 1, \dots, N, \quad s = 1, \dots, S$$

$$\theta_{is} = \alpha_{is} + x_{is}\beta_{1s} + T_{is}\beta_{2s} \sim G, \quad \text{where} \quad G:$$

$$\alpha_{is}|H \sim H, \quad H|\rho, H_0 \sim \operatorname{DP}(\rho, H_0), H_0 \sim \operatorname{N}(0, \tau^2), \rho \sim \Gamma(2, 1)$$

$$\beta_{1s} \sim \operatorname{N}(0, \omega_{\beta_{1s}}^2), \omega_{\beta_{1s}} \sim \operatorname{N}(0, 1)I(0, \infty)$$

$$\beta_{2s} \sim \operatorname{N}(0, \omega_{\beta_{2s}}^2), \omega_{\beta_{2s}} \sim \operatorname{N}(0, 1)I(0, \infty)$$

Flexible Regression-Type Adjustments

• Model 4: Regression-type (treatment interaction), partially exchangeable

$$\log it(p_{is}) = \theta_{is}, \quad i = 1, ..., N, \quad s = 1, ..., S$$

$$\theta_{is} = \alpha_{is} + x_{is}\beta_{1s} + T_{is}(\beta_{2s} + x_{is}\beta_{3s}) \quad \text{where} \quad G:$$

$$\alpha_{is}|H \sim H, \quad H|\rho, H_0 \sim \mathrm{DP}(\rho, H_0), H_0 \sim \mathrm{N}(0, \tau^2), \rho \sim \Gamma(2, 1)$$

$$\beta_{1s} \sim \mathrm{N}(0, \omega_{\beta_{1s}}^2), \omega_{\beta_{1s}} \sim \mathrm{N}(0, 1)I(0, \infty)$$

$$\beta_{2s} \sim \mathrm{N}(0, \omega_{\beta_{2s}}^2), \omega_{\beta_{2s}} \sim \mathrm{N}(0, 1)I(0, \infty)$$

$$\beta_{3s} \sim \mathrm{N}(0, \omega_{\beta_{3s}}^2), \omega_{\beta_{3s}} \sim \mathrm{N}(0, 1)I(0, \infty)$$

• When $\beta_{0j} = 0$, the model reduces to an exchangeable 1st-order interactions: Dixon-Simon (1991)

Bayesian Subgroup Analysis: Non-exchangeable Shrinkage Estimators

- Clusters S_k , k = 1, ..., K partitions the ψ_{ji_j} , $i = 1, ..., n_j$, j = 1, ..., J so that $\psi_{ji_j}|H_k$, H_k is DP with base distribution $H_0 \sim N(0, \tau^2)$ and cohesion/concentration coefficient $c(S_k) = \rho f(|S_k|, J)$, when $\psi_{ji_j} \in S_k$
- See Leon-Novello et al. (2012) for similar formulation through nonexchangeable product partition models

Non-exchangeable Shrinkage Estimators

Model 2B: Shrinkage with regression, non-exchangeable

$$\log \operatorname{it}(p_{ji_j}) = \theta_{ji_j}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, J$$

$$\theta_{ji_j} = x_{ji_j}\beta_j + \psi_{ji_j} \sim G, \quad \text{where} \quad G:$$

$$\psi_{ji_j}|H_k \sim H_k, \quad H_k|\rho, H_0 \sim \operatorname{DP}(\rho, H_0), H_0 \sim \operatorname{N}(0, \tau^2), \rho \sim \Gamma(2, 1)$$

$$\beta_j \sim \operatorname{N}(0, \omega_{\beta_j}^2), \omega_{\beta_j} \sim \operatorname{N}(0, 1)I(0, \infty)$$

Exchangeable Non-exchangeable Shrinkage Estimators

• Model 2C: Shrinkage with regression, exchangeable-non-exchangeable (EXNEX)

$$\log \operatorname{it}(p_{ji_j}) = \theta_{ji_j}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, J$$

$$\theta_{ji_j} = x_{ji_j}\beta_j + \psi_{ji_j} \sim G, \quad \text{where} \quad G:$$

$$\beta_j \sim \operatorname{N}(0, \omega_{\beta_j}^2), \omega_{\beta_j} \sim \operatorname{N}(0, 1)I(0, \infty), \quad \text{and}$$

• For each subgroup j, ψ_{ji_j} takes on values from a mixture of k distributions H. H is composed of H_k with probability p_k [say, $H_k = N(0, \tau_k^2)$] and so on; and $H_K = N(\mu, \tau^2)$ with probability $1 - \sum_k p_k$

Exchangeable Non-exchangeable Shrinkage Estimators

- The probabilities p_k can be set or data driven using a degenerate Dirichlet distribution prior on $\{p_1, \ldots, p_{k-1}\}$
- There will be subgroups j, j' with the same distribution H_k (exchangeable) or different distributions (non-exchangeable).

Bayesian Subgroup Analysis: Application

		Partially Ex	Non- exchange able	EXNEX		
Odds Ratio	Model 1	Model 2A	Model 3	Model 4*	Model 2B	Model 2C
OR(TRT1,T	1.87 (0.78,	1.52 (0.72,	1.50 (0.72,	1.54 (0.74,	1.59 (0.61,	1.68 (0.68,
RT2)	4.62)	3.77)	3.76)	3.83	5.29)	4.93)
OR(TRT1,T	0.59 (0.24,	0.69 (0.28,	0.69 (0.28,	0.63 (0.25,	0.73 (0.23,	0.66 (0.24,
RT3)	1.35)	1.43)	1.46)	1.45)	1.97)	1.62)
OR(TRT1,T	1.88 (0.60,	1.42 (0.61,	1.14 (0.65,	1.22 (0.69,	1.57 (0.55,	1.62 (0.57,
RT4)	5.73)	4.00)	2.76)	3.14)	5.92)	7.10)

^{*} Odds ratio is computed at a certain level of covariate

Bayesian Subgroup Analysis: Application

Predictive Probability of Success Per Subgroup and Model

Bayesian Subgroup Analysis: Application

 Model fit assessed through logarithm of the pseudo-marginal likelihood (LPML)

LPML =
$$\sum_{j=1}^{J} \sum_{i=1}^{n_j} \log p(y_{ji_j}|y_{-ji_j}) = \sum_{j=1}^{J} \sum_{i=1}^{n_j} \log \text{CPO}_{ji_j}$$
$$CPO_{ji_j} = p(y_{ji_j}|y_{-ji_j}) = E_{\theta}[p(y_{ji_j}|\theta)|y_{-ji_j})]$$

Partially Exchangeable				Non- exchangeable	EXNEX
Model 1	Model 2A	Model 3	Model 4	Model 2B	Model 2C
-435.4	-425.9	-424.5	-422.5	-421.3	-425.5

Data Augmentation

 A clinical trial design that relies on a historical or external control may be acceptable to evaluate efficacy in a patient population with an unmet need.

o Caveats:

- control patients should be as similar as possible to the population expected to receive the investigational drug in the trial
- currency of the historical control group also should be considered
- Consider the possibility of randomizing at least a small number of patients to the active control in the trial (e.g., through disproportionate randomization of 3:1, 4:1, among others)

Data Augmentation: Data Structure

- Two similar trials $T_1(n_E, n_C)$ and $T_2(n_E, n_C)$ each have n_E assigned to receive treatment E and n_C patients assigned to receive treatment C, $n_E = n_C = 300$, $N = n_E + n_C$.
- Consider T_1 as main trial and reduce the number of patients in the control group so that randomization mimics r:1, r>1. Say, if r=2, then randomly discard 150 patients in T_1 control group. Denote the reduced trial by $T_1^*(n_E, \frac{n_C}{r})$, which has $N^* = n_E + \frac{n_C}{r}$ patients.
- Let $R(n_E, \tilde{n}_C)$ be the reservoir, which has $\tilde{n}_C = n_C + \frac{n_C}{r}$ control records from T_2 and the discarded control records from T_1 , and n_E patient records from T_2 , $\tilde{N} = n_E + \tilde{n}_C$.

Data Augmentation: Propensity Score Matching

- Let x_{E_i} be the treatment response of subject i in the experimental group, $i = 1, \ldots, n_E$ and x_{C_j} be the treatment response of subject j in the control group, $j = 1, \ldots, n_C$
- Let $W_E = 1$ indicate that the treatment status is E and let e_i and \tilde{e}_i be the estimated propensity scores of T_1^* and R given measured covariates \mathbb{Z} , i.e.,

$$e_i = P(W_E = 1|\mathbf{Z}_i) = \frac{exp(\beta \mathbf{Z}_i)}{1 + exp(\beta \mathbf{Z}_i)}, \quad i = 1, \dots, N^*,$$
(6)

and

$$\tilde{e}_i = P(W_E = 1 | \mathbf{Z}_i) = \frac{exp(\beta \mathbf{Z}_i)}{1 + exp(\beta \mathbf{Z}_i)}, \quad i = 1, \dots, \tilde{N}.$$
 (7)

Data Augmentation: Propensity Score Matching

- GOAL: use the propensity score estimates \(\tilde{e}_i\) to match the scores \(e_i\) and bring in subjects with matched scores from the records of active-control treated patients in \(R\) to augment the control group in \(T_1^*\).
- To augment $T_1^*(n_E, \frac{n_c}{r})$, need at most $\tilde{n}_C = \frac{n_C}{r}$ subjects from R to mimic a 1 : 1 randomization. Since T_1^* has $n_E = r\tilde{n}_C$, i.e., $n_E > \tilde{n}_C$, how does matching happen?
- How much to augment/borrow? $\tilde{n}_C = ?$
- Unweighted or weighted treatment responses?

Data Augmentation: Matching Scheme 1

Figure 1: Example of matching scheme 1.

Data Augmentation: Matching Scheme 2

Data Augmentation: Matching Scheme 3

Success rates at primary endpoint of the combined $\frac{n_c}{r} + \tilde{n}_C$ patients treated with active-control from T_1^* and R vs. that of randomly selected (unmatched) $\tilde{n}_C = 150$ records of active-control treated patients from R. Dashed line: mean success rates of experimental drug in T_1^* ; dotted line: mean success rates of $n_C = 300$ controls from T_1 .

Weight each observation by

$$w_i = \frac{W_i}{\hat{e}(\mathbf{Z}_i)} + \frac{1 - W_i}{1 - \hat{e}(\mathbf{Z}_i)} \tag{8}$$

where $\hat{e}(\mathbf{Z}_i)$ is the estimated propensity score for observation i given covariates \mathbf{Z}_i .

• Average treatment effect (ATE), $\hat{\delta}$, for N^* observations is calculated as

$$\hat{\delta} = \frac{\sum_{i}^{N^*} x_i \times w_i}{\sum_{i}^{N^*} w_i},\tag{9}$$

where x_i is the treatment response for patient i at certain endpoint.

Weighted responses vs. unweighted responses at primary endpoint for combined controls ($\frac{n_c}{r} + \tilde{n}_C$ patients) and matched controls (\tilde{n}_C patients) using Scheme 1. Dashed line: mean success rates of experimental drug in T_1^* ; dotted line: mean success rates of $n_C = 300$ controls from T_1 ; dotdashed line: weighted success rates of experimental drug in Phase T_1^* .

Unweighted: T-C = -0.0082 (-0.0767, 0.0602) Weighted: T-C = -0.0543 (-0.1248, 0.0162)

Weighted responses vs. unweighted responses at primary endpoint for combined controls ($\frac{n_c}{r} + \tilde{n}_C$ patients) and matched controls (\tilde{n}_C patients) using Scheme 2. Dashed line: mean success rates of experimental drug in T_1^* ; dotted line: mean success rates of $n_C = 300$ controls from T_1 ; dotdashed line: weighted success rates of experimental drug in Phase T_1^* .

Unweighted: E-C = 0.0013 (-0.0656, 0.0683) Weighted: E-C = -0.0495 (-0.1203, 0.0213)

Weighted responses vs. unweighted responses at primary endpoint for combined controls $(\frac{n_c}{r} + \tilde{n}_C \text{ patients})$ and matched controls $(\tilde{n}_C \text{ patients})$ using Scheme 3. Dashed line: mean success rates of experimental drug in T_1^* ; dotted line: mean success rates of $n_C = 300$ controls from T_1 ; dotdashed line: weighted success rates of experimental drug in Phase T_1^* .

Unweighted E-C = 0.0029 (-0.0657, 0.0714) Weighted E-C = -0.0548 (-0.1253, 0.0157)

Percentages of matched controls from T_1 for each scheme.

Success rates of combined $(\frac{n_c}{r} + \tilde{n}_C)$ patients treated with active-control from T_1^* and R) controls at primary and secondary endpoints. Choose 50/100/150 active control records using scheme 1, 2, and 3. Dashed line: mean success rates of experimental drug in Phase III; dotted line: mean success rates of 300 controls from T_1 .

0.80

Success Rate

0.85

0.75

0.90

Overlaid histograms of estimated propensity scores comparing Experimental group $(n_E = 300)$ and Control group $(\tilde{n}_C = 300)$ after propensity score matching using different schemes.

Change of p-values for selected covariates of each stratum from before to after matching using Scheme 2. These covariates have p-value p < 0.05 before matching. The dashed lines represent the significance level 0.05 for conducing two sample test for means or proportions.

	Covariate	Experimental	Control	SMD	p-value	Stratum
3	REGION:US/Canada	82.00	35.00	107.00	0.00	1
4	REGION:Europe	15.00	50.00	-80.00	0.00	1
9	FEVER:Fever	18.00	40.00	-51.00	0.00	1
13	BLAGRP:>=75-150	33.00	10.00	58.00	0.01	1
14	BLAGRP:>150-300	39.00	15.00	56.00	0.01	1
15	BLAGRP:>300-600	13.00	42.00	-70.00	0.00	1
16	BLAGRP:>600-1000	5.00	30.00	-68.00	0.00	1
25	REGION:US/Canada	82.00	63.00	42.00	0.03	2
26	REGION:Europe	15.00	33.00	-43.00	0.02	2
32	INFECT:Cellulitis/erysipelas	39.00	60.00	-44.00	0.04	2
44	INCISION	0.45	0.67	-0.45	0.02	2
88	INCISION	0.45	0.71	-0.54	0.01	4
90	BMI	27.90	29.99	-0.42	0.03	5
105	IVDRUG:N	65.00	37.00	58.00	0.00	5
149	IVDRUG:N	65.00	43.00	44.00	0.04	7
157	REGION:US/Canada	82.00	100.00	-67.00	0.01	8
158	REGION:Europe	15.00	0.00	60.00	0.01	8
168	BLAGRP:>150-300	39.00	63.00	-50.00	0.01	8
178	BMI	27.90	25.39	0.46	0.02	g
179	REGION:US/Canada	82.00	100.00	-67.00	0.01	g
180	REGION:Europe	15.00	0.00	60.00	0.03	9
198	INCISION	0.45	0.21	0.51	0.00	g
201	REGION:US/Canada	82.00	100.00	-67.00	0.05	10
220	INCISION	0.45	0.09	0.88	0.00	10

Unbalanced covariates for certain strata after matching using Scheme 2

Acknowledgement

Junjing (Jane) Lin, UC-Santa Barbara

References

- Dixon D., Simon R. (1991). Bayesian Subset Analysis. Biometrics 47: 871-881
- Ibrahim J., Chen M.. (2000). Power prior distributions for regression models. Statistical Science 15:46–60.
- o Hartigan, J. (1990). *Partition Models*. Communications in Statistics, Theory and Methods, 19: 2745-2756
- o Hobbs BP, Carlin BP, Mandrekar SJ, Sargent DJ. (2011) *Hierarchical* commensurate and power prior models for adaptive incorporation of historical infomation in clinical trials. Biometrics **67**:1047-56.
- o Leon-Novelo, LG, et al. (2012). Borrowing strength with nonexchangeable priors over subpopulations. Biometrics 68: 550-558
- Lu, G. and Ades, A. E. (2004). Combination of direct and indirect evidence in mixed treatment comparisons. Statistics in Medicine 23: 3105-3124.
- Schmidli H, Wandel S, Neuenschwander B (2012) The network metaanalytic-predictive approach to non-inferiority trials. Statistical Methods in Medical Research, DOI: 10.1177/0962280211432512

References

- Sethuraman, J. and Tiwari, R. C. (1982) Convergence of Dirichlet measures and the interpretation of their parameter, *Statistical Decision Theory and Related Topics III* 2 305-315.
- Simon R. (1999) Bayesian design and analysis of active control clinical trials. Biometrics; 55: 484-487.